Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs

Carlos Fernandez, Daniel-I. Stroe, Ran Xiong, et al.

PDF
ca. 149,79
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Wärme-, Energie- und Kraftwerktechnik

Beschreibung

This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack.


Weitere Titel in dieser Kategorie
Cover Power Station Maintenance
PEP (Professional EngineeringPublishers)
Cover Hydrogen Energy
Matthew C. Ogwu

Kundenbewertungen

Schlagwörter

Energy storage, Machine learning, Multi-cell model of battery pack, Electrochemical model, Back propagation neural network, Parameter identification, Data-driven model, Battery health state, Battery characteristics, Extended single particle model, Degradation mode, Lithium-ion battery