Earth Observation Satellites

Task Planning and Scheduling

Shuang Peng, Hao Chen, Chun Du, et al.

PDF
ca. 106,99
Amazon 103,08 € iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Nature Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Astronomie

Beschreibung

This book highlights the practical models and algorithms of earth observation satellite (EOS) task scheduling. EOS task scheduling is a typical complex combinatorial optimization problem with NP-Hard computational complexity. It is a key technology in aerospace scheduling and has attracted global attention. Based on the actual needs of the EOS operation control center, the book summarizes and reviews the state of the art in this research and engineering field. In both deterministic scenarios and dynamic scenarios, the book elaborates on the typical models, algorithms, and systems in centralized, distributed, and onboard autonomous task scheduling. The book also makes an outlook on the promising technologies for EOS task planning and scheduling in the future. It is a valuable reference for professionals, researchers, and students in satellite-related technology. 



This book is a translation of an original Chinese edition. The translation was done with thehelp of artificial intelligence. A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation.

Weitere Titel in dieser Kategorie

Kundenbewertungen

Schlagwörter

Satellite scheduling, Image satellite scheduling, Satellite onboard scheduling, Satellite autonomous scheduling, Multi agent system model, Satellite task scheduling, Genetic algorithm for satellite, Satellite distributed scheduling, Satellite range scheduling