Privacy-Preserving Machine Learning

Xiaofeng Chen, Zheli Liu, Ping Li, et al.

PDF
ca. 58,84
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.

Weitere Titel in dieser Kategorie
Cover AI Glossary
Richard Khan
Cover AI Glossary
Richard Khan
Cover Some Future Day
Marc Beckman
Cover AI in Disease Detection
Shaik Vaseem Akram
Cover Network Models in Finance
Gueorgui S. Konstantinov

Kundenbewertungen

Schlagwörter

Artificial Intelligence, Machine Learning, Data Encryption, Privacy-preserving Technique, Neural Network, Secure Computation