Incompleteness for Higher-Order Arithmetic

An Example Based on Harrington’s Principle

Yong Cheng

PDF
ca. 58,84
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer Singapore img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Grundlagen

Beschreibung

Gödel's true-but-unprovable sentence from the first incompleteness theorem is purely logical in nature, i.e. not mathematically natural or interesting. An interesting problem is to find mathematically natural and interesting statements that are similarly unprovable. A lot of research has since been done in this direction, most notably by Harvey Friedman. A lot of examples of concrete incompleteness with real mathematical content have been found to date. This brief contributes to Harvey Friedman's research program on concrete incompleteness for higher-order arithmetic and gives a specific example of concrete mathematical theorems which is expressible in second-order arithmetic but the minimal system in higher-order arithmetic to prove it is fourth-order arithmetic.

This book first examines the following foundational question: are all theorems in classic mathematics expressible in second-order arithmetic provable in second-order arithmetic? The author gives a counterexample for this question and isolates this counterexample from the Martin-Harrington Theorem in set theory. It shows that the statement “Harrington's principle implies zero sharp" is not provable in second-order arithmetic. This book further examines what is the minimal system in higher-order arithmetic to prove the theorem “Harrington's principle implies zero sharp" and shows that it is neither provable in second-order arithmetic or third-order arithmetic, but provable in fourth-order arithmetic. The book also examines the large cardinal strength of Harrington's principle and its strengthening over second-order arithmetic and third-order arithmetic.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Principia
Isaac Newton
Cover Mathematical Logic
Daniel Cunningham
Cover Logic in Question
Amirouche Moktefi
Cover Axiomatic Thinking I
Giovanni Sommaruga
Cover Axiomatic Thinking II
Giovanni Sommaruga

Kundenbewertungen

Schlagwörter

Set Theory, Harrington's Principle, L-cardinals, higher order arithmetic, Martin-Harrington Theorem, Incompleteness