Building Transformer Models with PyTorch 2.0
Prem Timsina
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Informatik
Beschreibung
This book covers transformer architecture for various applications including NLP, computer vision, speech processing, and predictive modeling with tabular data. It is a valuable resource for anyone looking to harness the power of transformer architecture in their machine learning projects.The book provides a step-by-step guide to building transformer models from scratch and fine-tuning pre-trained open-source models. It explores foundational model architecture, including GPT, VIT, Whisper, TabTransformer, Stable Diffusion, and the core principles for solving various problems with transformers. The book also covers transfer learning, model training, and fine-tuning, and discusses how to utilize recent models from Hugging Face. Additionally, the book explores advanced topics such as model benchmarking, multimodal learning, reinforcement learning, and deploying and serving transformer models.In conclusion, this book offers a comprehensive and thorough guide to transformer models and their various applications.