Einstieg in Deep Reinforcement Learning
Brandon Brown, Alexander Zai
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Carl Hanser Verlag GmbH & Co. KG
Naturwissenschaften, Medizin, Informatik, Technik / Informatik
Beschreibung
- Grundlegende Konzepte und Terminologie
- Praktischer Einsatz mit PyTorch
- Projekte umsetzen
Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen.
Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften oder dem Aufbau eines Spiel-Bots an.
Aus dem Inhalt:
- Strukturierungsprobleme als Markov-Entscheidungsprozesse
- Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben
- Anwendung von Verstärkungslernalgorithmen auf reale Probleme
Kundenbewertungen
Agententechnologie, AlphaGo, Künstliche Intelligenz, PyTorch, Machine Learning, Deep Learning, Bestärkendes Lernen, Python, Autonomes Fahren, Deep Q-Networks