img Leseprobe Leseprobe

Monte Carlo and Quasi-Monte Carlo Methods

MCQMC 2022, Linz, Austria, July 17–22

Peter Kritzer (Hrsg.), Aicke Hinrichs (Hrsg.), Friedrich Pillichshammer (Hrsg.)

PDF
ca. 235,39
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Allgemeines, Lexika

Beschreibung

This book presents the refereed proceedings of the 15th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held in Linz, Austria, and organized by the Johannes Kepler University Linz and the Austrian Academy of Sciences, in July 2022. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these highly active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, in particular arising in finance, statistics and computer graphics.

Weitere Titel von diesem Autor
Peter Kritzer
Weitere Titel in dieser Kategorie
Cover Engineering AI Excellence
Azhar ul Haque Sario
Cover Turning Point
Jürgen Müller
Cover How to Launch a Token
Alexander Rees-Evans

Kundenbewertungen

Schlagwörter

discrepancy theory, quasi-Monte Carlo methods,, simulation, Monte Carlo methods, distributed sequences, information-based complexity, numerical integration, numerical algorithms, high-dimensional problems, scientific computing, data analysis