Singular Integral Operators, Quantitative Flatness, and Boundary Problems
Dorina Mitrea, Marius Mitrea, José María Martell, et al.
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Springer International Publishing
Naturwissenschaften, Medizin, Informatik, Technik / Analysis
Beschreibung
This monograph provides a state-of-the-art, self-contained account on the effectiveness of the method of boundary layer potentials in the study of elliptic boundary value problems with boundary data in a multitude of function spaces. Many significant new results are explored in detail, with complete proofs, emphasizing and elaborating on the link between the geometric measure-theoretic features of an underlying surface and the functional analytic properties of singular integral operators defined on it. Graduate students, researchers, and professionals interested in a modern account of the topic of singular integral operators and boundary value problems – as well as those more generally interested in harmonic analysis, PDEs, and geometric analysis – will find this text to be a valuable addition to the mathematical literature.
Kundenbewertungen
Geometric Measure Theory, Uniformly rectifiable domain, Ahlfors regular domain, Singular integral operators, Muckenhoupt weighted Sobolev space, Boundary value problem, Block space, Nontangentially accessible domain, Morrey space, Muckenhoupt weight, Boundary layer potential