img Leseprobe Leseprobe

Fuzzy Collaborative Forecasting and Clustering

Methodology, System Architecture, and Applications

Tin-Chih Toly Chen, Katsuhiro Honda

PDF
ca. 53,49
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer International Publishing img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Allgemeines, Lexika

Beschreibung

This book introduces the basic concepts of fuzzy collaborative forecasting and clustering, including its methodology, system architecture, and applications. It demonstrates how dealing with disparate data sources is becoming more and more popular due to the increasing spread of internet applications. The book proposes the concepts of collaborative computing intelligence and collaborative fuzzy modeling, and establishes several so-called fuzzy collaborative systems. It shows how technical constraints, security issues, and privacy considerations often limit access to some sources. This book is a valuable source of information for postgraduates, researchers and fuzzy control system developers, as it presents a very effective fuzzy approach that can deal with disparate data sources, big data, and multiple expert decision making.

Weitere Titel in dieser Kategorie
Cover Design Review Based on Failure Mode
Mohammed Hamed Ahmed Soliman

Kundenbewertungen

Schlagwörter

Big Data Analysis, Forecasting, Clustering, Multiple Expert Decision Making, Fuzzy Collaborative System, Applied Soft Computing, Fuzzy Collaborative Intelligence, data-driven science, modeling and theory building, Collaborative Computing Intelligence, Collaborative Fuzzy Modelling, Disparate Data Sources