Machine Learning avec Scikit-Learn - 3e éd.
Mise en oeuvre et cas concrets
Aurelien Geron
PDF
ca. 40,02 €
Amazon
iTunes
Thalia.de
Hugendubel
Bücher.de
ebook.de
kobo
Osiander
Google Books
Barnes&Noble
bol.com
Legimi
yourbook.shop
Kulturkaufhaus
ebooks-center.de
* Affiliatelinks/Werbelinks
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Informatik, EDV
Beschreibung
L’apprentissage automatique (Machine Learning) est aujourd’hui en pleine explosion. Mais de quoi s’agit-il exactement, et comment pouvez-vous le mettre en oeuvre dans vos propres projets ?
La 3
e édition de cet ouvrage de référence vous explique les concepts fondamentaux du Machine Learning et vous apprend à maîtriser les outils qui vous permettront de créer vous-même des systèmes capables d’apprentissage automatique.
Vous apprendrez ainsi à utiliser Scikit-Learn, un outil open source très simple et néanmoins très puissant que vous pourrez mettre en place dans vos systèmes en production.
- Apprendre les bases du Machine Learning en suivant pas à pas toutes les étapes d’un projet utilisant Scikit-Learn et Pandas.
- Ouvrir les boîtes noires pour comprendre comment fonctionnent les algorithmes.
- Explorer plusieurs modèles d’entraînement, notamment les machines à vecteur de support (SVM).
- Comprendre le modèle des arbres de décision et celui des forêts aléatoires, et exploiter la puissance des méthodes ensemblistes.
- Exploiter des techniques d’apprentissage non supervisées telles que la réduction de dimensionnalité, la classification et la détection d’anomalies.
Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l’adresse suivante : https://github.com/ageron/handson-ml3
Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie