Cancer Bioinformatics

Ying Xu, Juan Cui, David Puett, et al.

PDF
ca. 53,49
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Springer New York img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Sonstiges

Beschreibung

This book provides a framework for computational researchers studying the basics of cancer through comparative analyses of omic data. It discusses how key cancer pathways can be analyzed and discovered to derive new insights into the disease and identifies diagnostic and prognostic markers for cancer. Chapters explain the basic cancer biology and how cancer develops, including the many potential survival routes. The examination of gene-expression patterns uncovers commonalities across multiple cancers and specific characteristics of individual cancer types. The authors also treat cancer as an evolving complex system, explore future case studies, and summarize the essential online data sources. Cancer Bioinformatics is designed for practitioners and researchers working in cancer research and bioinformatics. It is also suitable as a secondary textbook for advanced-level students studying computer science, biostatistics or biomedicine.

Weitere Titel von diesem Autor
Weitere Titel in dieser Kategorie
Cover Flow Cytometry
Devendra K. Agrawal
Cover Hubris
Thomas Trappe
Cover Systems Biology II
Jan Barciszewski
Cover BrewingScience Yearbook 2023
Fachverlag Hans Carl GmbH
Cover On the Conservation of Force
Hermann von Helmholtz
Cover Biological Data Integration
Marie-Laure Martin-Magniette
Cover Micrographia
Robert Hooke

Kundenbewertungen

Schlagwörter

Bioinformatics, Cancer marker identification, Cancer genomes, Omic databases, Cancer pathway analysis, Cancer biology, Cancer bioinformatics, Cancer omic data analysis, Comparative omic analysis, Computational biology, Cancer systems biology