$p$-adic Geometry

Matthew Baker

PDF
ca. 75,92
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

American Mathematical Society img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mathematik

Beschreibung

In recent decades, $p$-adic geometry and $p$-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter School 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject. Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the $p$-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the $p$-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and $p$-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of $p$-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of $p$-adic geometry.

Weitere Titel in dieser Kategorie

Kundenbewertungen