Differential Manifolds

Serge Lang

PDF
ca. 94,30

Springer New York img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mathematik

Beschreibung

The present volume supersedes my Introduction to Differentiable Manifolds written a few years back. I have expanded the book considerably, including things like the Lie derivative, and especially the basic integration theory of differential forms, with Stokes' theorem and its various special formulations in different contexts. The foreword which I wrote in the earlier book is still quite valid and needs only slight extension here. Between advanced calculus and the three great differential theories (differential topology, differential geometry, ordinary differential equations), there lies a no-man's-land for which there exists no systematic exposition in the literature. It is the purpose of this book to fill the gap. The three differential theories are by no means independent of each other, but proceed according to their own flavor. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). One may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (e.g. it la Smale [26]).

Weitere Titel in dieser Kategorie
Cover Graph Coloring
Maurice Clerc
Cover Graph Coloring
Maurice Clerc
Cover Étale Cohomology
James S. Milne
Cover Calculus 2 Simplified
Oscar E. Fernandez
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Hybrid Nanofluids
Shriram S. Sonawane
Cover Hybrid Nanofluids
Shriram S. Sonawane

Kundenbewertungen