Machine Learning for Hackers

Case Studies and Algorithms to Get You Started

Drew Conway, John Myles White

PDF
ca. 39,45
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

O'Reilly Media img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

If youre an experienced programmer interested in crunching data, this book will get you started with machine learninga toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, youll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research.Develop a nave Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a whom to follow recommendation system from Twitter data

Weitere Titel in dieser Kategorie
Cover AI Glossary
Richard Khan
Cover AI Glossary
Richard Khan
Cover Some Future Day
Marc Beckman
Cover AI in Disease Detection
Shaik Vaseem Akram
Cover Network Models in Finance
Gueorgui S. Konstantinov

Kundenbewertungen