Adaptive Control of Parabolic PDEs
Miroslav Krstic, Andrey Smyshlyaev
* Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.
Naturwissenschaften, Medizin, Informatik, Technik / Mathematik
Beschreibung
This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others.
Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
Kundenbewertungen
Asymptotic analysis, Dimension (vector space), Observability, System identification, Eigenvalues and eigenvectors, Robustification, Phase margin, Identifiability, Nonlinear control, Sensor, Feedback linearization, Adaptive system, Pointwise, Extended Kalman filter, Estimation theory, Deterministic system, Control variable, Initial condition, Dirichlet boundary condition, Variable (mathematics), Estimator, Minimum phase, Integrator, Bode plot, Eigenfunction, Categorization, Mathematical optimization, Actuator, Discretization, Optimal control, Linearization, Gradient method, Lyapunov function, Accuracy and precision, Computation, Inverse Laplace transform, Riccati equation, Linear programming, Identifier, Measurement, Adaptive control, Derivative, Wave equation, Backstepping, Separation principle, Theorem, Parameter, Coefficient, Instability, Transfer function, Estimation, Linear differential equation, Bounded operator, Boundary value problem, Error term, Least squares, Frequency domain, Integral equation, Volterra operator, Parametrization, Parametric model, Rate of convergence, Reynolds number, Change of variables, Uncertainty, Control engineering, Laplace transform, Differential equation, Symbolic computation, Nonlinear system