img Leseprobe Leseprobe

Enterprise AI in the Cloud

A Practical Guide to Deploying End-to-End Machine Learning and ChatGPT Solutions

Rabi Jay

PDF
46,99
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

John Wiley & Sons img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik

Beschreibung

Embrace emerging AI trends and integrate your operations with cutting-edge solutions

Enterprise AI in the Cloud: A Practical Guide to Deploying End-to-End Machine Learning and ChatGPT Solutions is an indispensable resource for professionals and companies who want to bring new AI technologies like generative AI, ChatGPT, and machine learning (ML) into their suite of cloud-based solutions. If you want to set up AI platforms in the cloud quickly and confidently and drive your business forward with the power of AI, this book is the ultimate go-to guide. The author shows you how to start an enterprise-wide AI transformation effort, taking you all the way through to implementation, with clearly defined processes, numerous examples, and hands-on exercises. You'll also discover best practices on optimizing cloud infrastructure for scalability and automation.

Enterprise AI in the Cloud helps you gain a solid understanding of:

  • AI-First Strategy: Adopt a comprehensive approach to implementing corporate AI systems in the cloud and at scale, using an AI-First strategy to drive innovation
  • State-of-the-Art Use Cases: Learn from emerging AI/ML use cases, such as ChatGPT, VR/AR, blockchain, metaverse, hyper-automation, generative AI, transformer models, Keras, TensorFlow in the cloud, and quantum machine learning
  • Platform Scalability and MLOps (ML Operations): Select the ideal cloud platform and adopt best practices on optimizing cloud infrastructure for scalability and automation
  • AWS, Azure, Google ML: Understand the machine learning lifecycle, from framing problems to deploying models and beyond, leveraging the full power of Azure, AWS, and Google Cloud platforms
  • AI-Driven Innovation Excellence: Get practical advice on identifying potential use cases, developing a winning AI strategy and portfolio, and driving an innovation culture
  • Ethical and Trustworthy AI Mastery: Implement Responsible AI by avoiding common risks while maintaining transparency and ethics
  • Scaling AI Enterprise-Wide: Scale your AI implementation using Strategic Change Management, AI Maturity Models, AI Center of Excellence, and AI Operating Model

Whether you're a beginner or an experienced AI or MLOps engineer, business or technology leader, or an AI student or enthusiast, this comprehensive resource empowers you to confidently build and use AI models in production, bridging the gap between proof-of-concept projects and real-world AI deployments.

With over 300 review questions, 50 hands-on exercises, templates, and hundreds of best practice tips to guide you through every step of the way, this book is a must-read for anyone seeking to accelerate AI transformation across their enterprise.

Weitere Titel in dieser Kategorie
Cover AI Glossary
Richard Khan
Cover AI Glossary
Richard Khan
Cover Some Future Day
Marc Beckman
Cover Network Models in Finance
Gueorgui S. Konstantinov

Kundenbewertungen

Schlagwörter

scalable AI, business AI books, corporate AI, AI, ChatGPT, AI systems, AI culture, enterprise AI, deep learning, MLOps, cloud machine learning, business AI, machine learning books, artificial intelligence business, machine learning, digital transformation, cloud based AI