Bayesian Models

A Statistical Primer for Ecologists, 2nd Edition

N. Thompson Hobbs, Mevin B. Hooten

PDF
ca. 64,99 (Lieferbar ab 03. Juni 2025)
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

Princeton University Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / ÷kologie

Beschreibung

A fully updated and expanded edition of the essential primer on Bayesian modeling for ecologists

Uniquely suited to deal with complexity in a statistically coherent way, Bayesian modeling has become an indispensable tool for ecological research. This book teaches the basic principles of mathematics and statistics needed to apply Bayesian models to the analysis of ecological data, using language non-statisticians can understand. Deemphasizing computer coding in favor of a clear treatment of model building, it starts with a definition of probability and proceeds step-by-step through distribution theory, likelihood, simple Bayesian models, and hierarchical Bayesian models. Now revised and expanded, Bayesian Models enables students and practitioners to gain new insights from ecological models and data properly tempered by uncertainty.

  • Covers the basic rules of probability needed to model diverse types of ecological data in the Bayesian framework
  • Shows how to write proper mathematical expressions for posterior distributions using directed acyclic graphs as templates
  • Explains how to use the powerful Markov chain Monte Carlo algorithm to find posterior distributions of model parameters, latent states, and missing data
  • Teaches how to check models to assure they meet the assumptions of model-based inference
  • Demonstrates how to make inferences from single and multiple Bayesian models
  • Provides worked problems for practicing and strengthening modeling skills
  • Features new chapters on spatial models and modeling missing data

Weitere Titel von diesem Autor
N. Thompson Hobbs
Weitere Titel in dieser Kategorie
Cover Ecological Data
William K. Michener
Cover Bayesian Models
N. Thompson Hobbs
Cover Future Cities Making
Niki Frantzeskaki
Cover Lectures on Evolution
Thomas Henry Huxley
Cover Tapirs of the World
Rafael Reyna-Hurtado
Cover Brazilian Rhodolith Beds
Marina Nasri Sissini
Cover Aquatic Animal Nutrition
Christian E.W. Steinberg
Cover Tending Nature
Nathalie Gravel

Kundenbewertungen