Sparse Graphical Modeling for High Dimensional Data

A Paradigm of Conditional Independence Tests

Faming Liang, Bochao Jia

EPUB
ca. 63,15

CRC Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Mathematik

Beschreibung

This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference

Weitere Titel in dieser Kategorie
Cover Graph Coloring
Maurice Clerc
Cover Graph Coloring
Maurice Clerc
Cover Étale Cohomology
James S. Milne
Cover Calculus 2 Simplified
Oscar E. Fernandez
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Mathematics for Engineers
Francesc Pozo Montero
Cover Hybrid Nanofluids
Shriram S. Sonawane
Cover Hybrid Nanofluids
Shriram S. Sonawane

Kundenbewertungen