Hugging Face Transformers Essentials

From Fine-Tuning to Deployment

Robert Johnson

EPUB
ca. 9,71
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

HiTeX Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik, EDV

Beschreibung

"Hugging Face Transformers Essentials: From Fine-Tuning to Deployment" is an authoritative guide designed for those seeking to harness the power of state-of-the-art transformer models in natural language processing. Bridging the gap between foundational theory and practical application, this book equips readers with the knowledge to leverage Hugging Face's transformative ecosystem, enabling them to implement and optimize these powerful models effectively. Whether you are a beginner taking your first steps into the realm of AI or an experienced practitioner looking to deepen your expertise, this book offers a structured approach to mastering cutting-edge techniques in NLP.
Spanning a comprehensive array of topics, the book delves into the mechanics of building, fine-tuning, and deploying transformer models for diverse applications. Readers will explore the intricacies of transfer learning, domain adaptation, and custom training while understanding the vital ethical considerations and implications of responsible AI development. With its meticulous attention to detail and insights into future trends and innovations, this text serves as both a practical manual and a thought-provoking resource for navigating the evolving landscape of AI and machine learning technologies.

Kundenbewertungen

Schlagwörter

deployment, natural language processing, machine learning, transfer learning, transformer models, fine-tuning, AI development