The Kubeflow Handbook

Streamlining Machine Learning on Kubernetes

Robert Johnson

EPUB
ca. 9,71
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

HiTeX Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik, EDV

Beschreibung

"The Kubeflow Handbook: Streamlining Machine Learning on Kubernetes" is a comprehensive guide tailored for individuals seeking to harness the power of Kubeflow within the Kubernetes ecosystem. Written by an expert in computer science and software engineering, this book delves deep into the essential components and processes that make Kubeflow an invaluable tool for managing machine learning workflows. From its architecture to practical applications across various industries, readers will be equipped with the knowledge and skills necessary to deploy, scale, secure, and optimize machine learning models efficiently.
The handbook is meticulously structured to take readers from foundational concepts to advanced techniques, ensuring a thorough understanding of topics like Kubeflow Pipelines, model training and tuning, and serving and monitoring models. It also emphasizes the importance of security, compliance, and scalability, providing best practices and strategies to address the challenges of machine learning in production environments. With real-world case studies and step-by-step guidance, this book is an indispensable resource for data scientists, engineers, and IT professionals looking to elevate their machine learning initiatives using Kubeflow.

Kundenbewertungen

Schlagwörter

Kubernetes, Kubeflow, deployment, machine learning, model training, scalability, workflows