The MLflow Handbook

End-to-End Machine Learning Lifecycle Management

Robert Johnson

EPUB
ca. 9,71
Amazon iTunes Thalia.de Hugendubel Bücher.de ebook.de kobo Osiander Google Books Barnes&Noble bol.com Legimi yourbook.shop Kulturkaufhaus ebooks-center.de
* Affiliatelinks/Werbelinks
Hinweis: Affiliatelinks/Werbelinks
Links auf reinlesen.de sind sogenannte Affiliate-Links. Wenn du auf so einen Affiliate-Link klickst und über diesen Link einkaufst, bekommt reinlesen.de von dem betreffenden Online-Shop oder Anbieter eine Provision. Für dich verändert sich der Preis nicht.

HiTeX Press img Link Publisher

Naturwissenschaften, Medizin, Informatik, Technik / Informatik, EDV

Beschreibung

"The MLflow Handbook: End-to-End Machine Learning Lifecycle Management" is a definitive guide that equips data scientists and IT professionals with the tools and knowledge needed to effectively manage machine learning workflows. As machine learning continues to evolve, the complexity of managing models, experiments, and deployments demands robust solutions. This book provides a clear, structured approach to utilizing MLflow, an open-source platform designed to simplify and enhance every aspect of the machine learning lifecycle.
Through detailed chapters, readers are introduced to setting up MLflow environments, tracking experiments, managing models, and deploying them in production. The book delves into advanced customization features, ensuring that users can tailor MLflow to meet their specific needs. Case studies across diverse industries—ranging from healthcare to retail—illustrate practical applications and underscore MLflow’s flexibility and impact. Whether a newcomer to machine learning or an experienced professional, this handbook serves as an invaluable resource to mastering MLflow and advancing machine learning capabilities efficiently and effectively.

Kundenbewertungen

Schlagwörter

model deployment, customization features, lifecycle management, experimentation tracking, MLflow, machine learning, data science